PROGRAM STRUCTURE AND SYLLABUS For M. PHARM

MPH R 20 PCI Regulations

(Applicable for batches admitted from 2024-2025)

ADITYA PHARMACY COLLEGE

(An Autonomous Institution)

Approved by PCI, Permanently Affiliated to JNTUK, Recognized by UGC (sections 2f) ISO 9001: 2015 Certified Institution, Accredited by NAAC with "A" Grade

Aditya Nagar, ADB Road, Surampalem – 533 437, Kakinada District., A.P.

Email: office@adityapharmacy.edu.in Phone no: 98665 76663 ,9866076671

Table of Contents

S.No.	Content	Page. No.
S.NO.	Regulations	05
1.	Short Title and Commencement	05
2.	Minimum qualification for admission	05
3.	Duration of the program	05
4.	Medium of instruction and examinations	05
5.	Working days in each semester	05
6.	Attendance and progress	05
7.	Program/Course credit structure	06
8.	Academic work	06
9.	Course of study	07
10.	Program Committee	19
11.	Examinations/Assessments	19
12.	Promotion and award of grades	31
13.	Carry forward of marks	31
14.	Improvement of internal assessment	31
15.	Reexamination of end semester examinations	32
16.	Allowed to keep terms (ATKT)	32
17.	Grading of performances	32
18.	The Semester grade point average (SGPA)	32
19.	Cumulative Grade Point Average (CGPA)	33
20.	Declaration of class	33
21.	Project work	33
22.	Award of Ranks	34
23.	Award of degree	34
24.	Duration for completion of the program of study	34
25.	Revaluation I Retotaling of answer papers	34
26.	Re-admission after break of study	34
27.	Pharmaceutics (MPH)	35
28	Pharmaceutical Analysis (MPA)	
29.	Research Methodology & Biostatistics (MRM)	

असाधारण

EXTRAORDINARY

भाग III—खण्ड 4

PART III — Section 4 पाधिकार से प्रकाशित

PUBLISHED BY AUTHORITY

र्स. 3621 महें दिल्ली, बृहस्मिनियार, दिसम्बर 11, 2014/अग्रहायण 20, 1936 No. 3621 NEW DELIII, THURSDAY, DECEMBER 11, 2014/AGRAHAYANA 20, 1936

PHARMACY COUNCIL OF INDIA

NOTIFICATION

New Delhi, the 10th December, 2014

The Master of Pharmacy (M.Pharm) Course Regulations, 2014

No. 14-136/ 2014-PCL—In exercise of the powers conferred by Sections 10 and 18 of the Pharmacy Act, 1948 (8 of 1948), the Pharmacy Council of India, with the approval of the Central Government hereby makes the following regulations; namely—

PRINCIPAL
ANDRESS College
SURANNAICH 533 497

CHAPTER -I: REGULATIONS

1. Short Title and Commencement

These regulations shall be called as "The Revised Regulations for the Master of Pharmacy (M. Pharm.) Degree Program-Credit Based Semester System (CBSS) of the Pharmacy Council of India, New Delhi". They shall come into effect from the Academic Year 2016-17. The regulations framed are subject to modifications from time to time by the authorities of the university.

2. Minimum qualification for admission

A Pass in the following examinations

- a) B. Pharm Degree examination of an Indian university established by law in India from an institution approved by Pharmacy Council of India and has scored not less than 55% of the maximum marks (aggregate of 4years of B.Pharm.)
- b) Every student, selected for admission to post graduate pharmacy program in any PCI approved institution should have obtained registration with the State Pharmacy Council or should obtain the same within one month from the date of his/her admission, failing which the admission of the candidate shall becancelled.

Note: It is mandatory to submit a migration certificate obtained from the respective university where the candidate had passed his/her qualifying degree (B.Pharm.)

3. Duration of the program

The program of study for M.Pharm shall extend over a period of four semesters (two academic years). The curricula and syllabi for the program shall be prescribed from time to time by Phamacy Council of India, New Delhi.

4. Medium of instruction and examinations

Medium of instruction and examination shall be in English.

5. Working days in each semester

Each semester shall consist of not lessthan 100 working days. The odd semesters shall be conduted from the month of June/July to November.December and the even semesters shall be conducted from the month of December/January to May/June in every calendar year.

6. Attendance and progress

- A student shall be eligible to write University examinations if he acquires a minimum of 75% of attendance in aggregate of all the subjects/courses, and with minimum 50% in each and every course including practicals.
- Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester shall be granted by the College Academic Committee.
- Shortage of Attendance below 65% in aggregate shall not be condoned and not eligible to write their end semester examination of that class.
- Students whose shortage of attendance is not condoned in any semester are not eligible to write their end semester examination of that class.
- A prescribed fee shall be payable towards Condonation of shortage of attendance.
- A student shall not be promoted to the next semester unless, he satisfies the attendance requirement of the present semester, as applicable. They may seek re-admission into that semester when offered next. If any candidate fulfills the

attendance requirement in the present semester, he shall not be eligible for readmission into the same class.

7. Program/Course credit structure

As per the philosophy of Credit Based Semester System, certain quantum of academic work viz. theory classes, practical classes, seminars, assignments, etc. are measured in terms of credits. On satisfactory completion of the courses, a candidate earns credits. The amount of credit associated with a course is dependent upon the number of hours of instruction per week in that course. Similarly the credit associated with any of the other academic, co/extracurricular activities is dependent upon the quantum of work expected to be put in for each of these activities per week/ per activity.

7.1. Credit assignment

7.1.1. Theory and Laboratory courses

Courses are broadly classified as Theory and Practical. Theory courses consist of lecture (L) and Practical (P) courses consist of hours spent in the laboratory. Credits (C) for a course is dependent on the number of hours of instruction per week in that course, and is obtained by using a multiplier of one (1) for lecture and a multiplier of half (1/2) for practical (laboratory) hours. Thus, for example, a theory course having four lectures per week throughout the semester carries a credit of 4. Similarly, a practical having four laboratory hours per week throughout semester carries a credit of 2.

The contact hours of seminars, assignments and research work shall be treated as that of practical courses for the purpose of calculating credits i.e., the contact hours shall be multiplied by 1/2. Similarly, the contact hours of journal club, research work presentations and discussions with the supervisor shall be considered as theory course and multiplied by 1.

7.2. Minimum credit requirements

The minimum credit points required for the award of M.Pharm. degree is 95. However based on the credit points earned by the students under the head of co-curricular activities, a student shall earn a maximum of 100 credit points. These credits are divided into Theory courses, Practical, Seminars, Assignments, Research work, Discussions with the supervisor, Journal club and Co-Curricular activities over the duration of four semesters. The credits are distributed semester-wise as shown in Table 14. Courses generally progress in sequence, building competencies and their positioning indicates certain academic maturity on the part of the learners. Learners are expected to follow the semester-wise schedule of courses given in the syllabus.

8. Academic work

A regular record of attendance both in Theory, Practical, Seminar, Assignment, Journal club, Discussion with the supervisor, Research work presentation and Dissertation shall be maintained by the department/ teaching staff of respective courses.

M.Pharm I & II Semester Practicals:

- The individual student of the respective specialization need to carry out at least 75% of the practical prescribed in the syllabus.
- Based and depending upon the software available with the institute the practical can be designed.
- Some experiments have to be carried out only by Demonstration. Students are advised to know the Principle and Protocol of the experiment.

9. Course of study

The specializations in M.Pharm program is given in Table 1.

Table – 1: List of M.Pharm. Specializations and their Code

S. No.	Specialization	Code
1.	Pharmaceutics	MPH
5.	Pharmaceutical Quality Assurance	MQA

The course of study for M.Pharm specializations shall include Semester wise Theory & Practical as given in Table $-\ 2\&3$. The number of hours to be devoted to each theory and practical course in any semester shall not be less than that shown in Table $-2\ \&3$.

PRINCIPAL
Adding Physicagy College
Suranmaica-533 497

Table – 2: Course of study for M. Pharm. (Pharmaceutics)

Course	ble – 2: Course of study for M	Credit	Credit	Hrs./	
Code	Course	Hours	Points	wk	Marks
		ester I			
MPH101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100
MPH102T	Drug Delivery System	4	4	4	100
MPH103T	Modern Pharmaceutics	4	4	4	100
MPH104T	Regulatory Affair	4	4	4	100
MPH105PA	Pharmaceutics Practical I	6	3	6	75
МРН105РВ	Pharmaceutical Practical II	6	3	6	75
-	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Seme	ester II			
MPH201T	Molecular Pharmaceutics (Nano Technology and Targeted DDS) (NTDS)	4	4	4	100
MPH202T	Advanced Biopharmaceutics & Pharmacokinetics	4	4	4	100
MPH203T	Computer Aided Drug Development	4	4	4	100
MPH204T	Formulation Development of Pharmaceutical and Cosmetic Products	4	4	4	100
МРН205РА	Pharmaceutics Practical	6	3	6	75
МРН205РВ	Pharmaceutics Practical IV	6	3	6	75
-	Seminar/Assignment	7	4	7	100
	Total	3 E	26) JE	SEO.

PRINCIPAL
ANTINE PRINCIPAL
SURAPPANENT 533 497

Table – 3: Course of study for M. Pharm. (Pharmaceutical Analysis)

Table – 3: Course of study for M. Pharm. (Pharmaceutical Analysis)							
Course Code	Course	Credit Hours	Credit Points	Hrs./wk	Marks		
	Semester I						
MPA101T	Modern Pharmaceutical Analytical Techniques	4	4	4	100		
MPA102T	Advanced Pharmaceutical Analysis	4	4	4	100		
MPA103T	Pharmaceutical Validation	4	4	4	100		
MPA104T	Food Analysis	4	4	4	100		
MPA105PA	Pharmaceutical Analysis Practical I	6	3	6	75		
MPA105PB	Pharmaceutical Analysis Practical II	6	3	6	75		
-	Seminar/Assignment	7	4	7	100		
	Total	35	26	35	650		
	Semes	ster II					
MPA201T	Advanced Instrumental Analysis	4	4	4	100		
MPA202T	ModernBio-Analytical Techniques	4	4	4	100		
MPA203T	Quality Control and Quality Assurance	4	4	4	100		
MPA204T	Herbal and Cosmetic Analysis	4	4	4	100		
MPA205PA	Pharmaceutical Analysis Practical III	6	3	6	75		
MPA205PB	Pharmaceutical Analysis Practical IV	6	3	6	75		
-	Seminar/Assignment	7	4	7	100		
	Total	35	26	35	650		

Table-4: Course of study for M.Pharm. III Semester (Common for All Specializations)

(Common for the Specializations)						
Course Code	Course	Credit Hours	Credit Points			
MRM301T	Research Methodology and Biostatistics*	4	4			
-	Journal club	1	1			
-	Discussion / Presentation (Proposal Presentation)	2	2			
- Research Work		28	14			
	Total	35	21			

^{*} Non University Exam

Table–13: Course of study for M.Pharm. IV Semester (Common for All Specializations)

Course Code	Course	Credit Hours	Credit Points
-	Journal Club	1	1
-	Research Work	31	16
-	Discussion/Final Presentation	3	3
	Total	35	20

Table – 14: Semester wise credits distribution

Semester	Credit Points
1	26
II	26
III	21
IV	20
Co-curricular Activities (Attending Conference, Scientific Presentations and Other Scholarly Activities)	Minimum=02 Maximum=07*
Total Credit Points	Minimum=95 Maximum=100*

^{*}Credit Points for Co-curricular Activities

PRINCIPAL
AMONG PRINCIPAL
SHRANMAIEM-533 497

Table - 5: Guidelines for Awarding Credit Points for Co-curricular Activities

Name of the Activity	Maximum Credit Points Eligible / Activity
Participation in National Level Seminar/Conference/Workshop/Symposium/ Training Programs (related to the specialization of the student)	01
Participation in international Level Seminar/Conference/Workshop/Symposium/ Training Programs (related to the specialization of the student)	02
Academic Award/Research Award from State Level/National Agencies	01
Academic Award/Research Award from International Agencies	02
Research / Review Publication in National Journals	01
Research / Review Publication in International Journals	02

Note: International Conference: Held outside India; International Journal: The Editorial Board Outside India

*The credit points assigned for extra curricular and or co-curricular activities shall be given by the Principals of the colleges and the same shall be submitted to the University. The criteria to acquire this credit point shall be defined by the colleges from time to time.

One Research/Review publication is necessary for all M.Pharm students before the completion of IV Semester. The Research/Review article need to be published/acceptance in UGC care list journals or any other reputed journals.

1. Program Committee

The M. Pharm. programme shall have a Programme Committee constituted by the Head of the Institution in consultation with all the Heads of thedepartments.

The composition of the Programme Committee shall be as follows:

A teacher at the cadre of Professor shall be the Chairperson; One Teacher from each M.Pharm specialization and four student representatives (two from each academic year), nominated by the Head of the institution.

Duties of the Programme Committee:

Periodically reviewing the progress of the classes.

Discussing the problems concerning curriculum, syllabus and the conduct of classes.

Discussing with the course teachers on the nature and scope of assessment for the course and the same shall be announced to the students at the beginning of respective semesters.

- l. Communicating its recommendation to the Head of the Institution on academic matters.
- 2 The Programme Committee shall meet at least twice in a semester preferably at the end of each sessional exam and before the end semesterexam.

11. Examinations/Assessments

The schemes for internal assessment and end semester examinations are given from Table-16.

11.1. End semester examinations

The End Semester Examinations for each theory and practical course through semesters I to IV shall be conducted by the respective university except for the subject with asterix symbol (*) for which examinations shall be conducted by the subject experts at college level and the marks/grades shall be submitted to the university.

PRINCIPAL
ANDRE PRINCIPAL
SURAMMAIEM-533 437

Tables – 16: Schemes for internal assessments and end semester (Pharmaceutics- MPH)

	Internal Assessment						End Semester Exams	
Course Code	Course	Continues	Sessi	ional Exams	Total		Durati	Total Marks
		Mode	Marks	Duration	Total	Marks	on	
		SEMI	ESTER I					
MPH101T	Modern Pharmaceutical Analytical Techniques	10	15	1Hr	25	75	3Hr	100
MPH102T	Drug Delivery Systems	10	15	1Hr	25	75	3Hr	100
MPH103T	Modern Pharmaceutics	10	15	1Hr	25	75	3Hr	100
MPH104T	Regulatory Affairs	10	15	1Hr	25	75	3Hr	100
MPH105PA	Pharmaceutics Practical I	10	15	3Hr	25	50	3Hr	75
MPH105PB	Pharmaceutics Practical II	10	15	3Hr	25	50	3Hr	75
-	Seminar/Assignment	-	-	-	-	-	-	100
		Total						650
		SEME	STER II					
МРН201Т	Molecular Pharmaceutics (Nano Tech and Targeted DDS) (NTDS)	10	15	1Hr	25	75	3Hr	100
MPH202T	Advanced Biopharmaceutics & Pharmacokinetics	10	15	1Hr	25	75	3Hr	100
MPH203T	Computer Aided Drug Development	10	15	1Hr	25	75	3Hr	100
МРН204Т	Formulation Development of Pharmaceutical and Cosmetic Products	10	15	1Hr	25	75	3Hr	100
MPH205PA	Pharmaceutics Practical I	10	15	3Hr	25	50	3Hr	75
MPH205PB	Pharmaceutics Practical I	10	15	ЗНг	25	50	3Hr	75
-	Seminar/Assignment	-	-	-	-	-	-	100
		Total						650

Tables – 19: Schemes for internal assessments and end semester (Pharmaceutical Analysis-MPA)

Internal Assessment Exams								
Course Code	Course	Continues	Sessio	onal Exams				Total Marks
		Mode	Marks	Duration	Total	Marks	Duration	
		SEMI	ESTER I					
MPA101T	Modern Pharmaceutical Analytical Techniques	10	15	1Hr	25	75	ЗНг	100
MPA102T	Advanced Pharmaceutical Analysis	10	15	1Hr	25	75	3Hr	100
MPA103T	Pharmaceutical Validation	10	15	1Hr	25	75	3Hr	100
MPA104T	Food Analysis	10	15	1Hr	25	75	3Hr	100
MPA105PA	Pharmaceutical Analysis Practical I	10	15	ЗНг	25	50	ЗНг	75
MPA105PB	Pharmaceutical Analysis Practical II	10	15	3Hr	25	50	3Hr	75
	Seminar/Assignment	-	-	-	-	-	-	100
		Total						650
		SEME	STER II					
MPA201T	Advanced Instrumental Analysis	10	15	1Hr	25	75	3Hr	100
MPA202T	Modern Bio-Analytical Techniques	10	15	1Hr	25	75	3Hr	100
MPA203T	Quality Control and Quality Assurance	10	15	1Hr	25	75	3Hr	100
MPA204T	Herbal and Cosmetic Analysis	10	15	1Hr	25	75	ЗНг	100
MPA205PA	Pharmaceutical Analysis Practical III	10	15	3Hr	25	50	3Hr	75
MPA205PB	Pharmaceutical Analysis Practical IV	10	15	3Hr	25	50	ЗНг	75
	Seminar/Assignment	-	-	-	-	-	-	100
		Total						650

Tables-26: Schemes for internal assessments and end semester examinations (Semester III& IV)

			Inter	nal Assess	ment	End	Semester Exams	
Course Code	Course	Conti		Sessional Exams				Total Marks
		nuous Mode	Mark s	Durati on	Tot al	Mark s	Durati on	
		SEI	MESTE	ER III				
MRM30 1T	Research Methodology and Biostatistics*	10	15	1 Hr	25	75	3 Hrs	100
-	Journal club				25	-	-	25
-	Discussion / Presentation (Proposal Presentation)	-	-	·	50	-	-	50
-	Research work	-		-		350	1 Hr	350
		То	otal					525
		SEI	MESTE	ER IV				
-	Journal club				25		-	25
-	Discussion / Presentation (Proposal Presentation)	·			75			75
-	Research work and Colloquium	-				400	1 Hr	400
Total							500	

^{*}Non University Examination

<u>Note:</u> The answer scripts, question paper and attendance sheet need to be packed and kept under the institution safely.

⁻ The subject 'Research Methodology and Biostatistics (MRM 301T)' in III Semester has to be conducted by respective institute with paper setting followed by evaluation.

⁻ The award of marks to be uploaded in JNTUK portal.

11.2. Internal assessment: Continuous mode

The marks allocated for Continuous mode of Internal Assessment shall be awarded as per the scheme given below.

Table – 27: Scheme for awarding internal assessment: Continuous mode

Theory	
Criteria	Maximum Marks
Attendance (Refer Table – 28)	8
Student – Teacher interaction	2
Total	10
Practical	
Attendance (Refer Table – 28)	5
Based on Practical Records, Regular viva voce, etc.	5
Total	10

Table – 28: Guidelines for the allotment of marks for attendance

Percentage of Attendance	Theory	Practical
95 – 100	8	5
90 – 94	6	3.75
85 – 89	4	2.5
80 - 84	2	1.25

Allocation of marks for attendance will be considered on the basis of individual student's punctuality, regularity, attentiveness, conduct and submission of assignments.

11.2.1. Sessional Exams

Two sessional exams shall be conducted for each theory/practical course as per the schedule fixed by the college(s). The scheme of question paper for theory and practical sessional examinations is given in the table. The average marks of two sessional exams shall be computed for internal assessment as per the requirements given in tables.

12. Promotion and award of grades

A student shall be declared PASS and eligible for getting grade in a course of M.Pharm. program me if he/she secures at least 50% marks in that particular course including internal assessment.

13. Carry forward of marks

In case a student fails to secure the minimum 50% in any Theory or Practical course as specified in 12, then he/she shall reappear for the end semester examination of that course. However his/her marks of the Internal Assessment shall be carried over and he/she shall be entitled for grade obtained by him/her on passing.

14. Improvement of internal assessment

A student shall have the opportunity to improve his/her performance only once in the sessional exam component of the internal assessment. The re-conduct of the sessional exam shall be completed before the commencement of next end semester theory examinations.

15. Reexamination of end semester examinations

Revaluation/recounting/challenging valuation as per the University norms is acceptable within stipulated time period. This process is also applicable for all previous batches joined under PCI regulations.

Table – 29: Tentative schedule of end semester examinations

Semester	For Regular Candidates	For Failed Candidates
I and III	November / December	As per University norms
II and IV	May / June	As per University norms

16. Allowed to keep terms (ATKT):

No student shall be admitted to any examination unless he/she fulfills the norms given in 6. ATKT rules are applicable as follows:

A student shall be eligible to carry forward all the courses of I and II semesters till the III semester examinations. However, he/she shall not be eligible to attend the courses of IV semester until all the courses of I, II and III semesters are successfully completed.

A student shall be eligible to get his/her CGPA upon successful completion of the courses of I to IV semesters within the stipulated time period as per the norms.

Note: Grade AB should be considered as failed and treated as one head for deciding ATKT. Such rules are also applicable for those students who fail to register for examination(s) of any course in any semester.

17. Grading of performances

17.1. Letter grades and grade points allocations:

Based on the performances, each student shall be awarded a final letter grade at the end of the semester for each course. The letter grades and their corresponding grade points are given in Table -30.

Table-30: Letter grades and grade points equivalent to Percentage of marks and performances.

Percentage of Marks Obtained	Letter Grade	Grade Point	Performance		
90.00 – 100	0	10	Outstanding		
80.00 – 89.99	A	9	Excellent		
70.00 – 79.99	В	8	Good		
60.00 – 69.99	С	7	Fair		
50.00 – 59.99	D	6	Average		
Less than 50	F	0	Fail		
Absent	AB	0	Fail		

A learner who remains absent for any end semester examination shall be assigned a letter grade of AB and a corresponding grade point of zero. He/she should reappear for the said evaluation/examination in due course.

18. The Semester grade point average (SGPA)

The performance of a student in a semester is indicated by a number called 'Semester Grade Point Average' (SGPA). The SGPA is the weighted average of the grade points obtained in all the courses by the student during the semester. For example, if a student takes five courses (Theory /Practical) in a semester with credits C1, C2, C3 and C4 and the student's grade points in these courses are G1, G2, G3 and G4, respectively, and then students' SGPA is equal to:

$$C_1G_1 + C_2G_2 + C$$

$$SGPA = C_1 + C_2 + C_3 + C_4$$

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and ABS grade awarded in that semester. For example if a learner has a For ABS grade in course 4, the SGPA shall then be computed as:

$$SGPA = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4* ZERO}{C_1 + C_2 + C_3 + C_4}$$

19. Cumulative Grade Point Average (CGPA)

The CGPA is calculated with the SGPA of all the IV semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all IV semesters and their courses. The CGPA shall reflect the failed status incase of F grade(s), till the course(s) is/are passed. When the course(s) is/are passed by obtaining a pass grade on subsequent examination(s) the CGPA shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

$$C_{1}S_{1} + C_{2}S_{2} + C_{3}S_{3} + C_{4}S_{4}$$

$$CGPA = C_{1} + C_{2} + C_{3} + C_{4}$$

where C_1 , C_2 , C_3 ,... is the total number of credits for semester I,II,III,... and S_1 , S_2 , S_3 ,... is the SGPA of semester I,II,III,....

20. Declaration of class

The class shall be awarded on the basis of CGPA as follows:

First Class with Distinction = CGPA of 7.50 and above First Class = CGPA of 6.00 to 7.49 Second Class = CGPA of 5.00 to 5.99

21. Project work

All the students shall under take a project under the supervision of a teacher in Semester III to IV and submit a report. 4 copies of the project report shall be submitted (typed & bound copy not less than 75 pages).

The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). The projects shall be evaluated as per the criteria given below.

M.Pharm III Semester (research work)

The M.Pharm III Semester for conduct of research work will be evaluated by the external examiner with rich experience and Doctorate holder. Depending upon the number of students in each specialization examiner should be appointed. $C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4$

$$SGPA = C_1 + C_2 + C_3 + C_4$$

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester

PRINCIPAL
ANNUA PRINCIPAL
SURANNAMEN-533 437

shall take into consideration the F and ABS grade awarded in that semester. For example if a learner has a For ABS grade in course 4, the SGPA shall then be computed as:

$$SGPA = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4* ZERO}{C_1 + C_2 + C_3 + C_4}$$

22. Cumulative Grade Point Average (CGPA)

The CGPA is calculated with the SGPA of all the IV semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all IV semesters and their courses. The CGPA shall reflect the failed status incase of F grade(s), till the course(s) is/are passed. When the course(s) is/are passed by obtaining a pass grade on subsequent examination(s) the CGPA shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

$$CGPA = \frac{C_1S_1 + C_2S_2 + C_3S_3 + C_4S_4}{C_1 + C_2 + C_3 + C_4}$$

where C_1 , C_2 , C_3 ,... is the total number of credits for semester I,II,III,... and S_1 , S_2 , S_3 ,... is the SGPA of semester I,II,III,....

23. Declaration of class

The class shall be awarded on the basis of CGPA as follows:

First Class with Distinction = CGPA of 7.50 and above First Class = CGPA of 6.00 to 7.49 Second Class = CGPA of 5.00 to 5.99

24. Project work

All the students shall under take a project under the supervision of a teacher in Semester III to IV and submit a report. 4 copies of the project report shall be submitted (typed & bound copy not less than 75 pages).

The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). The projects shall be evaluated as per the criteria given below.

M.Pharm III Semester (research work)

The M.Pharm III Semester for conduct of research work will be evaluated by the external examiner with rich experience and Doctorate holder. Depending upon the number of students in each specialization examiner should be appointed. $C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4$

$$SGPA = C_1 + C_2 + C_3 + C_4$$

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and ABS grade awarded in that semester. For example if a learner has a For ABS grade in course 4, the SGPA shall then be computed as:

$$SGPA = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4* ZERO}{C_1 + C_2 + C_3 + C_4}$$

25. Cumulative Grade Point Average (CGPA)

The CGPA is calculated with the SGPA of all the IV semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all IV semesters and their courses. The CGPA shall reflect the failed status incase of F grade(s), till the course(s) is/are passed. When the course(s) is/are passed by obtaining a pass grade on subsequent examination(s) the CGPA shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

$$C_{1}S_{1} + C_{2}S_{2} + C_{3}S_{3} + C_{4}S_{4}$$

$$CGPA = C_{1} + C_{2} + C_{3} + C_{4}$$

where C_1 , C_2 , C_3 ,... is the total number of credits for semester I,II,III,... and S_1 , S_2 , S_3 ,... is the SGPA of semester I,II,III,....

26. Declaration of class

The class shall be awarded on the basis of CGPA as follows:

First Class with Distinction = CGPA of 7.50 and above First Class = CGPA of 6.00 to 7.49 Second Class = CGPA of 5.00 to 5.99

27. Project work

All the students shall under take a project under the supervision of a teacher in Semester III to IV and submit a report. 4 copies of the project report shall be submitted (typed & bound copy not less than 75 pages).

The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). The projects shall be evaluated as per the criteria given below.

28. M.Pharm III Semester (research work)

- The M.Pharm III Semester for conduct of research work will be evaluated by the external examiner with rich experience and Doctorate holder. Depending upon the number of students in each specialization examiner should be appointed.

PHARMACEUTICAL ANALYSIS (MPA)

SEMESTER - I

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES

Subject code: MPA101T

Course Objectives: Upon completion of the subject student shall be

COB1: Understand the spectroscopic concept upon pharmaceuticals, NMR with new compounds,

COB2: Apply NMR with new compounds

COB3: Integrate the mass data for molecules

COB4: Enumerate chromatography methods

COB5: Differentiate Electrophoresis and X-Ray crystallography

COB6: Asses the Unknown concentration sample by potentiometry and weight variation by

Thermal methods

Course Outcomes:

Course Outcome	STATEMENT
CO1 [L2]	<u>Understand</u> : The basic concepts of Spectroscopic method
CO2 [L3]	Apply: Computation of NMR Spectroscopy
CO3 [L6]	Generate: Mass spectroscopy of compounds by using instrumentation and ionisation techniques
CO4 [L1]	Remember: Quantification methods of Chromatography
CO5 [L4]	<u>Classify:</u> analytical method of electrophoresis and x-ray crystallography
CO6 [L5]	Evaluate: Predict the unknow concentrations of samples using ion selective methods (Potentiometry) and thermal methods for Pharmaceuticals

Course content 60Hours

UNIT -I 10 Hours Basic Methods of Spectroscopy:

a. UV-Visible spectroscopy: Introduction, Theory, Laws, Instrumentation associated with UV-Visible spectroscopy, Choice of solvents and solvent effect and Applications of UV-Visible spectroscopy, Difference/ Derivative spectroscopy.

b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier - Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy, Data Interpretation.

c. Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence (Characteristics

of drugs that can be analyzed by flourimetry), Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.

d.Flame emission spectroscopy and atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.

UNIT-II 10Hours

NMR Spectroscopy

Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

UNIT-III 10Hours

Mass Spectroscopy

Principle, Theory, Instrumentation of Mass Spectroscopy, Different types of ionization like electron impact, chemical field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Metastable ions, Isotopic peaks and Applications of Mass spectroscopy.

UNIT-IV 10Hours

Chromatography

Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution, isolation of drug from excipients, data interpretation and applications of the following:

- a. Thin Layer chromatography
- b. High Performance Thin Layer Chromatography
- c. Ion exchange chromatography
- d. Column chromatography
- e. Gas chromatography
- f. High Performance Liquid chromatography
- g. Ultra High-Performance Liquid chromatography
- h. Affinity chromatography
- i. Gel Chromatography

UNIT -V 10Hours

Electrophoresis

Principle, Instrumentation, working conditions, factors affecting separation and applications of the following:

- a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Isoelectric focusing
- b. X ray Crystallography: Production of X rays, Different X ray methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X- ray diffraction

UNIT-VI 10Hours

a. Potentiometry

Principle, working, Ion selective Electrodes and Application of potentiometry.

b. Thermal Techniques: Principle, thermal transitions and Instrumentation (Heat flux and power-compensation and designs), Modulated DSC, Hyper

PRINCIPAL
Addys Postmacy College
Suranmalem-533 497

(sample preparation, experimental conditions, calibration, heating and cooling rates, resolution, source of errors) and their influence, advantage and disadvantages, pharmaceutical applications.

Differential Thermal Analysis (DTA): Principle, instrumentation and advantage and disadvantages, pharmaceutical applications, derivative differential thermal analysis (DDTA). TGA: Principle, instrumentation, factors affecting results, advantage and disadvantages, pharmaceutical applications.

REFERENCES

- 1. Spectrometric Identification of Organic compounds- Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A.Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis—Willards, 7th edition, CBS publishers.
- 4. PracticalPharmaceutical Chemistry– Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.
- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation- PD Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern Methods- Part B- JW Munson, Vol 11, Marcel. Dekker Series
- 8. Spectroscopy of Organic Compounds, 2nd edn., P.S /Kalsi, Wileyestern Ltd., Delhi.
- 9. Textbook of Pharmaceutical Analysis, KA. Connors, 3rdEdition, John Wiley & Sons, 1982.

PRINCIPAL
ANTON PROTORTO CONTROL
SURANMAISMASS 497

ADVANCED PHARMACEUTICAL ANALYSIS

subject Code: MPA102T

Course Objectives: Upon completion of the subject student shall be

COB1: Understand the impurity profile and stability study **COB2:** Need perception upon the Elemental impurities

COB3: Shall able to understand biological products potency and evaluation tests

Course Outcomes:

CO1[L2]	Understand the impurity profile and Stability studies in pharmaceuticals
CO2[L1]	Enumerate Elemental impurities and stability testing protocol
CO3[L3]	Apply knowledge on Impurity profiling and degradant characterization and
	Impurity profiling and degradant characterization with special emphasis.
CO4[L4]	Analyse the Stability testing of phytopharmaceuticals
CO5[L5]	Evaluate Biological tests and assays
CO6[L6]	Construct the Immunoassays

Course content 60Hours

UNIT-I

BRIEF UNDERSTANDING OF IMPURITY AND STABILITY STUDIES 10Hours

Definition, classification of impurities in drug Substance or Active Pharmaceutical Ingredients and quantification of impurities as per ICH guidelines

Impurities in new drug products:

Rationale for the reporting and control of degradation products, reporting degradation products content of batches, listing of degradation products in specifications, qualification of degradation products

Impurities in residual solvents:

General principles, classification of residual solvents, Analytical procedures, limits of residual solvents, and reporting levels of residual solvents.

UNIT-II 10Hours ELEMENTAL IMPURITIES AND STABILITY TESTING PROTOCOL

Element classification, control of elemental impurities, Potential Sources of elemental Impurities, Identification of Potential Elemental Impurities, analytical procedures, instrumentation & C, H, N and S analysis

Stability testing protocols: Selection of batches, container orientation, test parameters, sampling frequency, specification, storage conditions, recording of results, concept of stability, commitment etc. Important mechanistic and stability related information provided by results of study of factors like temperature, pH, buffering species ionic strength and dielectric constant etc. on the reaction rates. With practical considerations.

UNIT-III 10 Hours

IMPURITY PROFILING AND DEGRADANT CHARACTERIZATION

Method development, Stability studies and concepts of validation, accelerated stability testing & shelf-life calculation, WHO and ICH stability testing guidelines, Stability zones, steps in development, practical considerations. Basics of impurity profiling and degradent characterization with special emphasis. Photostability testing guidelines, ICH stability

guidelines for biological products.

UNIT -IV 10Hours

STABILITY TESTING OF PHYTOPHARMACEUTICALS

Regulatory requirements, protocols, HPTLC /HPLC finger printing, interactions and complexity.

UNIT -V 10Hours

Biological tests and assays

- a. Adsorbed Tetanus vaccine
- b. Adsorbed Diphtheria vaccine
- c. Human anti haemophilic vaccine
- d. Rabies vaccine
- e. Tetanus Anti toxin
- f. Tetanus Anti serum
- g. Oxytocin h. Heparin sodium IP
- i. Antivenom. PCR, PCR studies for gene regulation, instrumentation (Principle and Procedures)

UNIT-VI

RADIO IMMUNE ASSAYS (RIA)

10Hours

Basic principles, Production of antibodies, Separation of bound and unbound drug, Radio immunoassay, Optical IA, Enzyme IA, Fluoro IA, Luminiscence IA, Quantification and applications of IA.

References

- 1. Vogel 's textbook of quantitative chemical analysis- Jeffery J Bassett, J. Mendham, R. C. Denney, 5th edition, ELBS, 1991.
- 2. Analytical Profiles of drug substances Klaus Florey, Volume 1 20, Elsevier, 2005
- 3. Analytical Profiles of drug substances and Excipients– Harry G Brittan, Volume 21 30, Elsevier, 2005
- 4. ICH Guidelines for impurity profiles and stability studies

PHARMACEUTICAL VALIDATION

Subject Code: MPA103T

COURSE OBJECTIVES: Upon completion of the subject student shall be

COB1: Explain the aspect of validation

COB2: Carryout validation of manufacturing processes

COB3: Apply the knowledge of validation to instruments and equipments

COB4: Validate the manufacturing

Course Outcomes:

Course	Statement		
Outcome			
CO1[L1]	Describe about Qualification and Validation, Factory Acceptance Test (FAT)/		
	Site Acceptance Test (SAT), Types of Qualifications, Re- Qualification.		
CO2[L2]	<u>Demonstrate</u> Qualification of Manufacturing Equipments, Analytical		
	Instruments and Laboratory equipments.		
CO3[L2]	Summarize the concept of Qualification of Analytical Instruments,		
	Qualification of Glassware.		
CO4[L4]	<u>Classify</u> about Validation of utility systems.		
CO5[L2]	Explain the importance of Analytical Method Validation - General principles,		
	Validation of analytical method as per ICH guidelines and USP. Computerized system validation.		
CO6[L2]	<u>Discuss</u> about General Principles, Types and Concepts of Intellectual Property		
	Rights.		
CO7[L3]	Contrast PCT, IPR, Societal Responsibility, Avoiding Unethical Practices.		

Course contents 60 Hours

UNIT-I 12 Hours

INTRODUCTION: Definition of Qualification and Validation, Advantage of Validation, Streamlining of Qualification & Validation process and Validation Master Plan.

QUALIFICATION: User Requirement Specification, Design Qualification, Factory Acceptance Test (FAT)/ Site Acceptance Test (SAT), Installation Qualification, Operational Qualification, Performance Qualification, Re- Qualification (Maintaining status- Calibration Preventive Maintenance, Change management), Qualification of Manufacturing Equipments, Qualification of Analytical Instruments and Laboratory equipments.

UNIT-II 12 Hours

QUALIFICATION OF ANALYTICAL INSTRUMENTS: Electronic balance, pH meter, UV-Visible spectrophotometer, FTIR, GC, HPLC, HPTLC Qualification of Glassware: Volumetric flask, pipette, Measuring cylinder, beakers and burette.

UNIT-III 12 Hours Addy Pharmacy College

VALIDATION OF UTILITY SYSTEMS: Pharmaceutical Water System & pure steam, HVAC system, Compressed air and nitrogen.

Cleaning Validation: Cleaning Validation - Cleaning Method development, Validation and validation of analytical method used in cleaning. Cleaning of Equipment, Cleaning of Facilities. Cleaning in place (CIP).

UNIT- IV 12 Hours

Analytical Method Validation: General principles, Validation of analytical method as per ICH guidelines and USP.

Computerized System Validation: Electronic records and digital significance- 21 CFR part 11 and GAMP 5.

UNIT-V 12 Hours

GENERAL PRINCIPLES OF INTELLECTUAL PROPERTY: Concepts of Intellectual Property (IP), Intellectual Property Protection (IPP), Intellectual Property Rights (IPR); Economic importance, mechanism for protection of Intellectual Property —patents, Copyright, Trademark; Factors affecting choice of IP protection; Penalties for violation; Role of IP in pharmaceutical industry; Global ramification and financial implications. Filing a patent application; patent application forms and guidelines. Types of patent applications-provisional and non-provisional, PCT and convention patent applications; International patenting requirement procedures and costs; Rights and responsibilities of a patentee; Practical aspects regarding maintaining of a Patent file; Patent infringement meaning and scope. Significance of transfer technology (TOT), IP and ethics-positive and negative aspects of IPP; Societal responsibility, avoiding unethical practices.

REFERENCES:

- 1] Validation Master plan by Terveeks or Deeks, Davis Harwood International publishing.
- **2**] The Theory & Practice of Industrial Pharmacy, 3rd edition, Leon Lachman, Herbert A. Lieberman, Joseph. L. Karig, Varghese Publishing House, Bombay.
- **3**] Pharmaceutical Equipment Validation: The Ultimate Qualification Handbook, Phillip A. Cloud, Interpharm Press.
- **4**] B. T. Loftus & R. A. Nash, "Pharmaceutical Process Validation", Drugs and Pharm Sci. Series, Vol. 129, 3rd Ed., Marcel Dekker Inc.,
- **5**] Analytical Method validation and Instrument Performance Verification by Churg Chan, Heiman Lam, Y.C. Lee, Yue. Zhang, Wiley Inter Science.

PRINCIPAL
AMON PRINCIPAL
SURAPMANEM-533 (37

FOOD ANALYSIS

Subject code: MPA104T

Course Objectives: Upon completion of the subject student shall be

COB1: To understand analytical techniques in the determination

Food constituents, Food additives, Finished food.

COB2: To understand analytical techniques in the determination Finished food

COB3: To understand analytical techniques in the determination

Pesticides in food & student shall have the knowledge on food regulations and legislations

Course Outcomes:

Course	STATEMENT
Outcome	
CO1 [L2]	Explain about Carbohydrates, Dietary fibre, Crude fibre &
	Chemistry, Classification of amino acids, absorption and metabolism of
	proteins.
CO2 [L1]	Enumerate about Lipids, refining of fats and oils, hydrogenation of
	vegetable oils.
CO3 [L3]	Calculate Adulteration and its types, Vitamins, Methods of analysis of
	Vitamins, Microbial assay of vitamins of B-series.
CO4 [L5]	Evaluate about Food additives, Pigments and synthetic dyes.
CO5 [L4]	<u>Characterize</u> the general Analytical methods for milk, milk
	constituents and milk products and their adulteration & fermentation
	products.
CO6 [L6]	<u>Design</u> Pesticide analysis & effects of pest and insects on various food,
	Pesticides
	in agriculture, Pesticide cycle, & Pesticide residues in grain, fruits,
	vegetables, milk and milk products, BIS, Agmark, FDA and US-FDA.

Course contents

60 HOURS

UNIT-I 12 Hours

CARBOHYDRATES: Classification and properties of food carbohydrates, General methods of analysis of food carbohydrates, Changes in food carbohydrates during processing, Digestion, absorption and metabolism of carbohydrates, Dietary fibre, Crude fibre and applications of food carbohydrates.

Proteins: Chemistry and classification of amino acids and proteins, Physico - Chemical properties of protein and their structure, general methods of analysis of proteins and amino acids, Digestion, absorption and metabolism of proteins.

UNIT-II 12 Hours

LIPIDS: Classification, general methods of analysis, refining of fats and oils; hydrogenation of vegetable oils, Determination of adulteration in fats and oils, Various methods used for measurement of spoilage of fats and fatty foods.

Vitamins: classification of vitamins, methods of analysis of vitamins, Principles of microbial assay of vitamins of B-series.

UNIT-III 12 Hours

FOOD ADDITIVES: Introduction, analysis of Preservatives, antioxidants, artificial sweeteners, flavors, flavor enhancers, stabilizers, thickening and jelling agents.

Pigments and synthetic dyes: Natural pigments, their occurrence and characteristic properties, permitted dyes, non-permitted synthetic dyes used by industries, Method of detection of natural, permitted and non-permitted dyes.

UNIT- IV 12 Hours

GENERAL ANALYTICAL METHODS for milk, milk constituents and milk products like ice cream, milk powder, butter, margarine, cheese including adulterants and contaminants of milk. Analysis of fermentation products like wine, spirits, beer and vinegar.

UNIT-V 12 Hours

PESTICIDE ANALYSIS: Effects of pest and insects on various food, use of pesticides in agriculture, pesticide cycle, organophosphorus and organochlorine pesticides analysis, determination of pesticide residues in grain, fruits, vegetables, milk and milk products. Legislation regulations of food products with special emphasis on BIS, Agmark, FDA and US-FDA.

REFERENCES:

- 1] The chemical analysis of foods David Pearson, Seventh edition, Churchill Livingstone, Edinburgh London, 1976.
- **2**] Introduction to the Chemical analysis of foods S. Nielsen, Jones & Bartlett publishers, Boston London, 1994.
- 3] Official methods of analysis of AOAC International, sixth edition, Volume I & II, 1997.
- **4]** Analysis of Food constituents Multon, Wiley VCH.
- **5**] Dr. William Horwitz, Official methods of analysis of AOAC International, 18th edition, 2005.

Pharmaceutical Analysis – I

Subject Code: MPA105PA

Course Objectives:

COB1: Understand about calibration of instruments

COB2: Practical approach for Assay of official compounds

COB3: Estimation of Vitamins, quinine sulphates

COB4: Quantitative determination of Hydroxyl and amino groups in pharmaceuticals

COB5: Application of colorimetric determination of drugs by different reagents

COURSE OUTCOMES:

CO	STATEMENT
CO1[L2]	Understand the calibration procedures with acceptance criteria
CO2[L3]	Determine the cleaning validation
CO3[L4]	<u>Apply</u> the assay methodology for official compounds by different titrations and instrumental methods
CO4[L3]	Select the estimation methods for the Vitamins and Ion concentrations.
CO5[L5]	Judge the Quantification methods for hydroxyl and amino groups
CO6[L6]	<u>Design and construct</u> colorimetric methods for drugs by using different reagents

List of Experiments

Expt.	Title	CO
No 1.	Calibration of volumetric apparatus, pH meter, UV and Visible Spectrophotometer, FTIR Spectrophotometer, HPLC and gas chromatography	CO1
2.	Assay of Metronidazole	CO3
3.	Assay of magnesium sulphate	CO3
4.	Assay of ascorbic acid using single- and Double-point standardisation method	CO3
5.	Assay of paracetamol using A ¹ % 1CM OR Specific Absorbance	CO3
6.	Simultaneous estimation of caffeine and sodium benzoate by absorption ratio method	CO3
7.	Assay of sulpha acetamide sodium in eye drops using brotton Marshal Reagent	CO4
8.	Assay of paracetamol by chemical derivatization method	CO3
9.	Assay of furosemide	CO3

10.	Assay of Nimesulide using PDAB reagent	CO6
11.	Assay of ciprofloxacin using ferric nitrate reagent	CO6
12.	Assay of salbutamol using Folin –Ciocalteu reagent	CO6
13.	Assay of paracetamol by oxidation method	CO5
14.	Assay of salbutamol using Gibbs reagent	CO5
15.	Estimation of sodium and potassium ion concentration in the given sample using flame photometry	CO4
16.	Assay of Quinine sulphate using Fluorimeter	CO3

Reference

- 1. A.H.Beckett & J.B .Stenlake's , Practical Pharmaceutical Chem Vol I & II ,Stahlone press of university of London.
- 2. A.I.Vogel, Text book of Quantitative inorganic analysis
- 3. Bentley and Driver's Text book of Pharmaceutical Chemistry
- 4. Indian Pharmacopoeia

Pharmaceutical Analysis – II

Subject Code: MPA 105PB

Course Objectives:

COB1: To learn objective of this course practically for pharmacopoeia compounds

COB2: To handling of HPLC and GC instruments and learn their objectives and applications

COB3: Determination of biological compounds in pharmaceuticals

COB4: Determination of food additive content

COB5: Evaluate the density and specific gravity of foods

COURSE OUTCOMES:

СО	STATEMENT
CO1[L1]	Remember: Analyze pharmacopoeial compounds and their formulations using UV-Vis spectrophotometry to determine their concentration and quality
CO2[L5]	<u>Understand:</u> Perform simultaneous estimation of multi-component formulations using UV spectrophotometry, applying appropriate techniques for accurate measurement of each component in complex mixtures.
CO3[L3]	Apply: Conduct experiments using HPLC to separate, identify, and quantify components in pharmaceutical and food samples, demonstrating competence in method development and optimization.
CO4[L4]	Analyze: Perform experiments using Gas Chromatography to analyze volatile compounds in food, including pesticides, food additives, and flavoring agents, ensuring product safety and compliance with standards.
CO5[L5]	Evaluate: Evaluate the quality of food products by determining saponification value, iodine value, peroxide value, and acid value to assess the stability and composition of fats and oils in food.
CO6[L5]	<u>Create:</u> Employ analytical techniques to determine the presence of food additives, preservatives, and pesticide residues in food products, ensuring safety and compliance with regulatory standards.

List of Experiments

S.No	Title of the experiment	CO
1.	Assay of ascorbic acid using single point standardisation method	CO1
2.	Assay of paracetamol using A ^{1% 1} CM OR Specific Absorbance	CO1
3.	Assay of furosemide	CO1
4.	Simultaneous estimation of caffeine and sodium benzoate by absorption ratio method	CO1
5.	Assay of aceclofenac by HPLC	CO3
6.	Assay of oestradiol by GC – FID	CO4
7.	Estimation of reducing and non-reducing sugars in fresh fruits	CO2
8.	Determination of protein by spectrophotometric method	CO2
9.	Determination of saponification value from oil	CO4
10.	Determination of iodine value, Acid value, Peroxide value from oil	CO4
11.	Estimation of rancidity from edible oil	CO4
12.	Estimation of fat content	CO4
13.	TLC Method for isolation and confirmation of oil soluble colours	CO3

14.	Determination of preservatives in foods	CO6
15.	Determination of pesticide residue in foods	CO6
16.	Vitamin C (ascorbic acid) content in food by UV –Spectroscopy and Titrimetric methods	CO1
17.	Determination of density, relative density and specific gravity of foods	CO5

Reference

- 1. A.H.Beckett & J.B .Stenlake's , Practical Pharmaceutical Chem Vol I & II ,Stahlone press of university of London.
- 2. A.I.Vogel , Text book of Quantitative inorganic analysis
- 3. Bentley and Driver's Text book of Pharmaceutical Chemistry
- 4. Indian Pharmacopoeia
- 5. Here is the corrected table with the six course outcomes based on your provided data:

Semester: II

PRINCIPAL
Adding Phytopacy College
SURAMPAIEM 533 497

ADVANCED INSTRUMENTAL ANALYSIS

Subject code: MPA 201T

Course Objectives: Upon completion of the course the student shall be able to

COB1: Interpretation of the NMR, Mass and IR spectra of various organic compounds

COB2: Theoretical and practical skills of the hyphenated instruments

COB3: Identification of organic compounds

COURSE OUTCOMES:

Course outcome	Statement		
CO1 [L2]	Explain - basics of chromatography and principle, instrumentation, Pharmaceutical applications for HPLC, and HILIC approaches.		
CO2 [L1]	Explain- size exclusion, ion exchange, affinity, ion pair chromatography for stationary phases and mobile phases, gas chromatography principle, instrumentation, derivatization, head space, columns.		
CO3[L3]	Explain -High performance Thin Layer chromatography Principles, instrumentation, pharmaceutical applications		
CO4 [L2]	Explain- principle, instrumentation, Pharmaceutical applications for Supercritical fluid chromatography, capillary electrophoresis, method development.		
CO5 [L2]	Explain -principle, instrumentation, Pharmaceutical applications for Mass spectroscopy, Ionization Techniques and Mass Analysers.		
CO6 [L5]	Compare-principle, instrumentation, Pharmaceutical applications for NMR Spectroscopy. FT-NMR, C13NMR, 2-DNMR, LC-NMR		

Course contents 60 Hours

UNIT-I 12 Hours

HPLC: Principle, instrumentation, pharmaceutical applications, peak shapes, capacity factor, selectivity, plate number, plate height, resolution, band broadening, pumps, injector, detectors, columns, column problems, gradient HPLC, HPLC solvents, trouble shooting, sample preparation, method development, New developments in HPLC- role and principles of ultra, nano liquid chromatography in pharmaceutical analysis.

Immobilized polysaccharide CSP's: Advancement in enantiomeric separations, revised phase Chiral method development and HILIC approaches. HPLC in Chiral analysis of pharmaceuticals. Preparative HPLC, and practical aspects of preparative HPLC.

UNIT-II 12 Hours

Biochromatography: Size exclusion chromatography, ion exchange chromatography, ion air chromatography, affinity chromatography, general principles, stationary phases and mobile phases.

PRINCIPAL
ANDRE POSTERACY College
SURADMAISIA-533 497

63

Gas chromatography: Principles, instrumentation, derivatization, head space sampling, columns for GC, detectors, quantification.

High performance Thin Layer chromatography: Principles, instrumentation, pharmaceutical applications.

UNIT-III 12 Hours

Supercritical fluid chromatography: Principles, instrumentation, pharmaceutical applications.

Capillary electrophoresis: Overview of CE in pharmaceutical analysis, basic configuration, CE characteristics, principles of CE, methods and modes of CE. General considerations and method development in CE, Crown ethers as buffer additives in capillary electrophoresis. CE-MS hyphenation.

UNIT-IV 12 Hours

Mass spectrometry: Principle, theory, instrumentation of mass spectrometry, different types of ionization like electron impact, chemical, field, FAB and MALD, APCI, ESI, APPI mass fragmentation and its rules, metastable ions, isotopic peaks and applications of mass spectrometry. LC- MS hyphenation and DART MS analysis. Mass analyzers (Quadrpole, Time of flight, FT- ICR, ion trap and Orbitrap) instruments. MS/MS systems (Tandem: QqQ, TOF-TOF;Q-IT, Q-TOF, LTQ-FT, LTQ-Orbitrap.

UNIT-V 12 Hours

NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR with reference to 13CNMR: Spin spin and spin lattice relaxation phenomenon. 13CNMR, 1- D and 2-D NMR, NOESY and COSY techniques, Interpretation and Applications of NMR spectroscopy. LC-NMR hyphenations.

REFERENCES

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5 th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7 th edition, CBS publishers.
- 4. Organic Spectroscopy William Kemp, 3 rd edition, ELBS, 1991.
- 5. Quantitative analysis of Pharmaceutical formulations by HPTLC P D Sethi, CBS Publishers. New Delhi.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3 rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11, Marcel Dekker Series.
- 8. Organic Spectroscopy by Donald L. Paviya, 5th Edition.

MODERN BIOANALYTICAL TECHNIQUES

Subject Code: MBAT 202T

Course Objectives: Upon completion of the subject student shall be

COB1: Extraction & Bioanalytical method validation guidelines, Pharmacokinetics and

toxicokinetic drug interactions

COB2: Biopharmaceutical factors affecting drug bioavailability and biopharmaceutical system, Cell culture, MTT Assay, flow cytometry

COB3: Metabolite identification and drug product performance

Course Outcomes:

	Statement
Course	
outcome	
CO1[L1]	Remember: Enumerate the drug extraction
CO2[L2]	Explain: Guidelines of Bioanalytical Validation
CO3[L2]	Summarize: Bioavailability and BCS Classification
CO4[L2]	Interpretate: Drug interactions and Toxicokinetic evaluation
CO5[L5]	Evaluate: The Cell culture techniques & MTT Assays
CO6[L6]	Construct: Development of protocols for Drug product performance

Course Contents 60Hours UNIT-I 12Hours

Extraction of Drug and Metabolites

Extraction of drugs and metabolites from biological matrices: General need, principle and procedure involved in the Bioanalytical methods such as Protein precipitation, Liquid-Liquid extraction and Solid phase extraction and other novel sample preparation approach. Bioanalytical method validation: USFDA and EMEA guidelines.

UNIT-II 12Hours

Biopharmaceutical Consideration

Introduction, Biopharmaceutical Factors Affecting Drug Bioavailability, *in vitro*: Dissolution and Drug Release Testing, Alternative Methods of Dissolution Testing Transport models, Biopharmaceutics Classification System. Solubility: Experimental methods. Permeability: *Invitro*, *in-situ* and *In-vivo* methods.

UNIT-III 12Hours

Pharmacokinetics and Toxicokinetic

Basic consideration, Drug interaction (PK-PD interactions), The effect of protein-binding interactions, the effect of tissue-binding interactions, Cytochrome P450- based drug interactions, Drug interactions linked to transporters. Microsomal assays.

Toxicokinetics- Toxicokinetic evaluation in preclinical studies, Importance and applications of toxicokinetic studies. LC- MS in bioactivity screening and proteomics.

UNIT -IV 12Hours

Cell culture techniques

Basic equipment's used in cell culture lab. Cell culture media, various types of cell culture, general procedure for cell cultures; isolation of cells, subculture, cryopreservation, characterization of cells and their applications. Principles and applications of cell viability assays (MTT assays), Principles and applications of flow cytometry.

UNIT -V 12Hours

Metabolite identification

In-vitro / in-vivo approaches, protocols and sample preparation. Microsomal approaches (Rat liver microsomes (RLM) and Human liver microsomes (HLM) in Met–ID. Regulatory Perspectives.

In-vitro assay of drug metabolites & drug metabolizing enzymes.

Drug Product Performance, *in vivo*: Bioavailability and Bioequivalence: Drug Product Performance, Purpose of Bioavailability Studies, Relative and Absolute Availability. Methods for Assessing Bioavailability, Bioequivalence Studies, Design and Evaluation of Bioequivalence Studies, Study Designs, Crossover Study Designs, Generic Biologics (Biosimilar Drug Products), Clinical Significance of Bioequivalence Studies.

REFERENCES

- 1. Analysis of drugs in biological fluids- Joseph Chamberlain, 2nd Edition.CRC Press, Newyork. 1995.
- 2. Principles of Instrumental Analysis- Doglas A Skoog, F.James Holler, Timothy A. Nieman, 5th edition, Easternpress, Bangalore, 1998.
- 3. Pharmaceutical Analysis-Higuchi, Brochmman and Hassen, 2nd Edition, Wiley Interscience Publications, 1961.
- 4. Pharmaceutical Analysis- Modern methods- Part B- JW Munson, Volume 11, Marcel Dekker Series
- 5. Practical HPLC method Development Snyder, Kirkland, Glaich, 2nd Edition, John Wiley & Sons, New Jercy. USA.
- 6. Chromatographic Analysis of Pharmaceuticals John A Adamovics, 2nd Edition, Marcel Dekker, New york, USA. 1997.
- 7. Chromatographic methods in clinical chemistry & Toxicology– Roger LBertholf, Ruth EWinecker, John Wiley & Sons, New Jercy, USA. 2007.
- 8. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg, Vol. 69, Marcel Dekker Series, 1995.
- 9. Good laboratory Practice Regulations Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989.
- 10. ICH, USFDA & CDSCO Guidelines.

MPA 203T QUALITY CONTROL AND QUALITY ASSURANCE

Subject code: MPA 203T

Course Objectives: Upon completion of the course the student shall be able to **COB1**: Understand the components of cgmp aspects in a pharmaceutical industry

COB2: To appreciate the importance of documentation

COB3: To understand the scope of quality certifications applicable to Pharmaceutical industries, the responsibilities of QA & QC departments.

Course outcomes:

Course outcome	Statement
CO1 [L2]	Review the concepts of QAQC, GLP.GMP, ICH guidelines
CO2 [L1]	<u>Discuss</u> about cGMP guidelines according to schedule M, USFDA (inclusive of CDER and CBER), PIC, WHO and EMEA along with CPCSEA guidelines.
CO3[L3]	<u>Determine</u> the Analysis of raw materials, finished products, packaging materials, IPQC and Finished product quality control as per IP, BP, USP
CO4 [L2]	Summarize the Developing specification (ICH Q6 and Q3)
CO5 [L2]	Review the documentation in pharmaceutical industry
CO6 [L5]	Evaluate Manufacturing operations and controls in pharmaceutical industry

Course contents 60 Hours

UNIT-I 12 Hours

Concept and Evolution of Quality Control and Quality assurance

Good Laboratory Practice, GMP, Overview of ICH Guidelines - QSEM, with special emphasis on Q-series guidelines.

Good Laboratory Practices: Scope of GLP, Definitions, Quality assurance unit, protocol for conduct of non-clinical testing, control on animal house, report preparation and documentation.

UNIT-II 12 Hours

cGMP guidelines according to schedule M, USFDA (inclusive of CDER and CBER) Pharmaceutical Inspection Convention (PIC), WHO and EMEA covering: Organization and

personnel responsibilities, training, hygiene and personal records, drug industry location, design, construction and plant lay out, maintenance, sanitation, environmental control, utilities and maintenance of sterile areas, control of contamination and Good Warehousing Practice. CPCSEA guidelines.

UNIT-III 12Hours

Analysis of raw materials, finished products, packaging materials, in process quality control (IPQC), developing specification (ICH Q6 and Q3). Purchase specifications and maintenance of stores for raw materials. In process quality control and finished products quality control for following formulation in Pharma industry according to Indian, US and British pharmacopoeias: tablets, capsules, ointments, suppositories, creams, parenteral, ophthalmic and surgical products (How to refer pharmacopoeias), Quality control test for containers, closures and secondary packing materials.

•

UNIT-IV 12Hours

Documentation in pharmaceutical industry: Three tier documentation, Policy, Procedures and Work instructions, and records (Formats), Basic principles- How to maintain, retention and retrieval etc. Standard operating procedures (How to write), Master Formula Record, Batch Formula Record, Quality audit plan and reports. Specification and test procedures, Protocols and reports. Distribution records. Electronic data.

UNIT-V 12Hours

Manufacturing operations and controls: Sanitation of manufacturing premises, mix-ups and cross contamination, processing of intermediates and bulk products, packaging operations, IPQC, release of finished product, process deviations, charge-in of components, time limitations on production, drug product inspection, expiry date calculation, calculation of yields, production record review, change control, sterile products, aseptic process control, and packaging.

References:

- 1. Quality Assurance Guide by organization of Pharmaceutical Procedures of India, 3rd revised edition, Volume I & II, Mumbai, 1996.
- 2. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol. 69, Marcel Dekker Series, 1995.
- 3. Quality Assurance of Pharmaceuticals- A compedium of Guide lines and Related materials Vol I & II, 2nd edition, WHO Publications, 1999.
- 4. How to Practice GMP's P P Sharma, Vandana Publications, Agra, 1991.
- 5. The International Pharmacopoeia vol I, II, III, IV & V General Methods
- of Analysis and Quality specification for Pharmaceutical Substances, Excepients and Dosage forms, 3rd edition, WHO, Geneva, 2005.
- 6. Good laboratory Practice Regulations Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989.
- 7. ICH guidelines
- 8. ISO 9000 and total quality management
- 9. The drugs and cosmetics act 1940 Deshpande, Nilesh Gandhi, 4th edition, Susmit Publishers, 2006.
- 10. QA Manual D.H. Shah, 1st edition, Business Horizons, 2000.
- 11. Good Manufacturing Practices for Pharmaceuticals a plan for total quality control Sidney H. Willig, Vol. 52, 3rd edition, Marcel Dekker Series.
- 12. Steinborn L. GMP/ISO Quality Audit Manual for Healthcare Manufacturers and Their

Suppliers, Sixth Edition, (Volume 1 - With Checklists and Software Package). Taylor & Francis; 2003.

13. Sarker DK. Quality Systems and Controls for Pharmaceuticals. John Wiley & Sons; 2008.

PRINCIPAL
AMOUNT PORTORACY College
SURAPPRAISAS 437

HERBAL AND COSMETIC ANALYSIS

Subject Code: MPA 204T

Course Objectives: Upon completion of the course the student shall be able to understand,

COB1: Principles of performance evaluation of cosmetic products.

COB2: Determination of Herbal drug-drug interaction

COB3: Analysis of natural products and monographs

COB4: Determination of herbal remedies and regulations

COURSE OUTCOMES:

COURSE	STATEMENT
OUTCOME	
CO1[L1]	<u>Describe</u> about Herbal remedies &Toxicity and Regulations WHO and
	AYUSH guidelines.
CO2[L2]	<u>Demonstrate</u> about Adulteration and Deterioration, causes and measures
	techniques in identification of drugs microbial contamination.
CO3[L6]	Generate Regulatory requirements Global marketing management,
	patent law and its protocol.
CO4[L6]	<u>Create</u> Set up for testing of natural products and drugs & monographs
CO5[L2]	Explain. Herbal drug-drug interaction, WHO and AYUSH guidelines for
	safety monitoring.
CO6[L2]	Discuss . general methods of analysis of raw material used in cosmetic
	manufacture as per BIS. Indian Standard specification laid down for
	sampling and testing of various cosmetics

Course contents 60 Hours

UNIT-I 12Hours

Herbal remedies- Toxicity and Regulations: Herbals vs Conventional drugs, Efficacy of herbal medicine products, Validation of Herbal Therapies, Pharmacodynamic and Pharmacokinetic issues. Herbal drug standardization: WHO and AYUSH guidelines.

UNIT-II 12Hours

Adulteration and Deterioration: Introduction, types of adulteration/substitution of herbal drugs, Causes and Measure of adulteration, Sampling Procedures, Determination of Foreign Matter, DNA Finger printing techniques in identification of drugs of natural origin, heavy metals, pesticide residues, phototoxin and microbial contamination in herbal formulations. Regulatory requirements for setting herbal drug industry: Global marketing management, Indian and international patent law as applicable herbal drugs and natural products and its protocol.

UNIT-III 12Hours

Testing of natural products and drugs: Effect of herbal medicine on clinical laboratory testing, Adulterant Screening using modern analytical instruments, Regulation and dispensing of herbal drugs, Stability testing of natural products, protocol. Monographs of Herbal drugs:

PRINCIPAL
AMOVE PROTOREY College
SURANNAIEM-533 637

Study of monographs of herbal drugs and comparative study in IP, USP, Ayurvedic Pharmacopoeia, American herbal Pharmacopoeia, British herbal Pharmacopoeia, Siddha and Unani Pharmacopoeia, WHO guidelines in quality assessment of herbal drugs.

UNIT-IV 12Hours

Herbal drug-drug interaction: WHO and AYUSH guidelines for safety monitoring of natural medicine, Spontaneous reporting schemes for bio drug adverse reactions, bio drug-drug and bio drug-food interactions with suitable examples. Challenges in monitoring the safety of herbal medicines.

UNIT-V 12Hours

Evaluation of cosmetic products: Determination of acid value, ester value, saponification value, iodine value, peroxide value, rancidity, moisture, ash, volatile matter, heavy metals, fineness of powder, density, viscosity of cosmetic raw materials and finished products. Study of quality of raw materials and general methods of analysis of raw material used in cosmetic manufacture as per BIS. Indian Standard specification laid down for sampling and testing of various cosmetics in finished forms such as baby care products, skin care products, dental products, personal hygiene preparations, lips sticks. Hair products and skin creams by the Bureau Indian Standards

REFERENCES

- 1. Pharmacognosy by Trease and Evans
- 2. Pharmacognosy by Kokate, Purohit and Gokhale
- 3. Quality Control Methods for Medicinal Plant, WHO, Geneva
- 4. Pharmacognosy & Pharmacobiotechnology by Ashutosh Kar
- 5. Essential of Pharmacognosy by Dr.S.H.Ansari 6. Cosmetics Formulation, Manufacturing and Quality Control, P.P. Sharma, 4 th edition, Vandana Publications Pvt. Ltd., Delhi

PRINCIPAL
ANDREW PRINCIPAL
SURANMANENA-533 497

Pharmaceutical Analysis – III

Subject code: MPA 205P

Course Objectives: Upon completion of the course the student shall be able to

COB1: Wood ward fissure

COB2: FT-IR COB3: Mass

COB4: Electrophoresis

COB5: HPLC

COB6: Protocol for BA/BE

COURSE OUTCOMES:

СО	STATEMENT
CO1[L2]	Comparison of absorption spectra by UV and Wood ward – Fiesure rule.
CO2[L2]	Interpretation of organic compounds by FT-IR, NMR, Mass,
CO3[L3]	Determination of purity by DSC in pharmaceuticals
CO4[L1]	Apply Bio molecules separation utilizing various sample preparation techniques
CO4[L1]	and Quantitative analysis of components by gel electrophoresis.
	Evaluate -Bio molecules separation utilizing various sample preparation
CO5[L4]	techniques and Quantitative analysis of components by HPLC techniques &
	Isolation of analgesics from biological fluids (Blood serum and urine)
CO6[L2]	Apply-Protocol preparation and performance of analytical/Bio analytical
COULLZ	method validation and BA/BE studies according to guidelines.

List of Experiments

S.No	Title of the experiment	CO
1.	Comparison of absorption spectra by UV and Wood ward -Fiesure rule	CO1
2.	Interpretation of organic compounds by FTIR	CO2
3.	Interpretation of organic compounds by ¹ H NMR	CO2
4.	Interpretation of organic compounds by ¹³ C NMR	CO2
5.	Interpretation of organic compounds by DEPT Spectra	CO2
6.	Interpretation of organic compounds by COSY Spectra	CO2
7.	Interpretation of organic compounds by Mass spectra	CO2
8.	Distinguish of Pentan -2-one and pentane -3-one compounds by mass spectra	CO2
9.	Identification of organic molecules using FT –IR, by ¹ H NMR, ¹³ C NMR and Mass spectra	CO2

10.	Determination of purity by DSC	CO3
11.	Isolation of analgesic compounds from biological fluids	CO5
12.	Protocol preparation for AMV	CO6
13.	Design of Protocol for Bioequivalence studies asper CDSCO	CO6

Reference

- 1. A.H.Beckett & J.B .Stenlake's , Practical Pharmaceutical Chem Vol I & II ,Stahlone press of university of London.
- 2. A.I.Vogel, Text book of Quantitative inorganic analysis
- 3. Bentley and Driver's Text book of Pharmaceutical Chemistry
- 4. Indian Pharmacopoeia

PRINCIPAL
Addys Phytograpy College
Synaphysica 533 497

Pharmaceutical Analysis – IV

Subject Code: MPA 205PB

Course Objectives: Upon completion of the course the student shall be able to understand

COB1: Finished product QC COB2: Raw material Testing COB3: Master Formula Record COB4: Batch Manufacturing Record

COB5: Determination of different products of significant values

COURSE OUTCOMES:

СО	STATEMENT
CO1[L5]	Evaluation of in process and finished product
CO2[L5]	Assessment of raw materials and drugs
CO3[L2]	Understand preparation of BMR and MFR
CO4[L3]	Apply the quantitative analysis of rancidity
CO5[L4]	Characterization of related substances
CO6[L1]	Remember & Determine purity, foam height, fatty mater, acid value for
COULT	pharmaceuticals

List of Experiments

S.No	Title of Experiment	CO
1	FPQC Test for Pharmaceutical capsules	CO1
2.	Finished product quality control tests for paracetamol tablets	CO1
3.	Quality control of glass containers asper I.P.	CO2
4.	Assay of IBUPROFEN using UV Visible Spectrophotometer	CO1
5.	Characterise related substances of caffeine using thin layer chromatography	CO5
6.	Instruction for preparation of batch manufacturing report	CO3
7.	Instructions for the preparation of master formula record	CO3
8.	Estimation of rancidity in hair oil	CO1
9.	Estimation of peroxide value in edible oil	CO1

10.	Determination of aryl amine content as the active dye in hair dye	соз
11.	Determination of developer in hair dye	CO3
12.	Determination of SLS content in shampoo	CO3
13.	Determination of foam height in shampoo	CO3
14.	Determination of total fatty substance content in hair cream	CO3
15.	Determination of total fatty substance content in marketed bath soap	CO3
16.	Determination of Acid value	СОЗ
17.	Determination of saponification value	CO3
18.	Determination of calcium thioglycolate in depilatories	CO3

Reference

- 1. A.H.Beckett & J.B .Stenlake's , Practical Pharmaceutical Chem Vol I & II ,Stahlone press of university of London.
- 2. A.I.Vogel, Text book of Quantitative inorganic analysis
- 3. Bentley and Driver's Text book of Pharmaceutical Chemistry
- 4. Indian Pharmacopoeia

PRINCIPAL
AND PRINCIPAL
SURANNAISM 533 437

SEMESTER – III

PRINCIPAL
ANTON Photography College
SURADWALENA-533 437

Research Methodology & Biostatistics

Subject Code: MRM301

Course Objectives: Upon completion of the subject student shall be

COB1: Understand the perceive problem and hypothesis, test hypothesis, report results

COB2: Importance of statistical investigation -collection data, organisation, presentation, analysis of data.

COB3: Understand the interpretation of data.

Course Outcomes:

COURSE	STATEMENT
OUTCOME	
CO1 [L1]	<u>Identify</u> the General Research Methodology requirements, review of literature. study design
CO2 [L3]	Summarise: Sample size, (students "t" test, ANOVA, Correlation coefficient, regression), nonparametric tests (Wilcoxon rank tests, analysis of variance, correlation, chi square test), null hypothesis, P values, degree of freedom, interpretation of P values.
CO3 [L2]	Apply: Medical Research: confidentiality, criticisms of orthodox medical ethics, importance of communication, control resolution, guidelines, ethics committees
CO4 [L4]	Analyse ; conflicts of interest, referral, vendor relationships, treatment of family members, sexual relationships, fatality.
CO5 [L1]	Evaluate: CPCSEA guidelines for laboratory animal facility.
CO6 [L3]	Integrate: basic principles for all medical research related problem.

Course Contents 60 Hours

UNIT-I 10 Hours

General Research Methodology: Research, objective, requirements, practical difficulties, review of literature, study design, types of studies, strategies to eliminate errors/bias, controls, randomization, crossover design, placebo, blinding techniques

UNIT-II 20 Hours

Biostatistics: Definition, application, sample size, importance of sample size, factors influencing sample size, dropouts, statistical tests of significance, type of significance tests, parametric tests (students "t" test, ANOVA, Correlation coefficient, regression), non parametric tests (Wilcoxon rank tests, analysis of variance, correlation, chi square test), null hypothesis, P values, degree of freedom, interpretation of P values.

UNIT-III 15 Hours

Medical Research: History, values in medical ethics, autonomy, beneficence, nonmaleficence, double effect, conflicts between autonomy and beneficence/non-maleficence, euthanasia, informed consent, confidentiality, criticisms of orthodox medical ethics, importance of communication, control resolution, guidelines, ethics committees, cultural concerns, truth telling, online business practices, conflicts of interest, referral, vendor relationships, treatment of family members, sexual relationships, fatality.

UNIT- IV 9 Hours

CPCSEA guidelines for laboratory animal facility: Goals, veterinary care, quarantine, surveillance, diagnosis, treatment and control of disease, personal hygiene, location of animal facilities to laboratories, anaesthesia, physical facilities, environment, animal husbandry, record keeping, SOPs, personnel and training, transport of lab animals.

UNIT-V 6 Hours

Declaration of Helsinki: History, introduction, basic principles for all medical research, and additional principles for medical research combined with medical care.

REFERENCES:

- 1. Ackoff, Russell L., The Design of Social Research, Chicago: University of Chicago Press, 1961.2.
- 2. Ackoff, Russell L., Scientific Method, New York: John Wiley & Sons, 1962.3.
- 3. Allen, T. Harrell, New Methods in Social Science Research, New York: Praeger Publishers, 1978.4.
- 4. Anderson, H.H., and Anderson, G.L., An Introduction to Projective Techniques and Other Devices for Understanding the Dynamics of Human Behaviour, New York: Prentice Hall, 1951.5.
- 5. Anderson, T.W., An Introduction to Multivariate Analysis, New York: John Wiley & Sons, 1958.6.
- 6. Bailey, Kenneth D., "Methods of Social Research," New York, 1978.7.
- 7. Baker, R.P., and Howell, A.C., The Preparation of Reports, New York: Ronald Press, 1938.8. Bartee, T.C., "Digital Computer Fundamentals," 5th Ed., McGraw-Hill, International Book Co., 1981.9.
- 8. Barzun, Jacques, and Graff, Henery, F., The Modern Researcher, rev. ed., New York: Harcourt, Brace &World, Inc., 1970.10.
- 9. Bell, J.E., Projective Techniques: A. Dynamic Approach to the Study of Personality, New York: Longmans Green, 1948.11.
- **10.** Bellenger, Danny N., and Greenberg, Barnett A., Marketing Research—A Management Information Approach, Homewood, Illinois: Richard D. Irwin, Inc., 1978.

PRINCIPAL
ANDREW Planting College
SURADINALEM 533 497